SAFE ZERO-EMISSIONS ENERGY

THE CHALLENGE

A nuclear energy company based in France wanted to proactively address the possibility of thermal fatigue occurring within a structural component in one of their reactors. Thermal fatigue arises from constant temperature changes and can lead to macroscopic cracks. While these cracks can be easily identified, they often occur in areas not directly accessible by employees carrying out an inspection. Failing to inspect, identify and address these cracks can result in costly plant closures, disruptions to the electricity production for the local community or serious nuclear incidents.

THE SOLUTION

The nuclear energy company hired Previan to utilize our Guided Wave Testing (GWT) technology. This technology uses low frequency ultrasound waves which allow for inspection at the inaccessible point of interest. As part of

the project, we provided a permanent GWT tool which can withstand significant temperature changes and is used to collect inspection data 24/7, even while the power station is operational.

ACCURATE	INNOVATION	SAFETY	UP-TIME
Detection of cracks in previously inaccessible areas	Advancements through applicability of technology for other markets	Improvements through testing away from high- temperature areas	Improvements for the plant and also the electricity supply
THE RESULTS The technology was success letected a change within a s pocation a crack had formed. The size of the defect, evalua	structural component at th . This allowed the compan te other similar componer	e exact y to quantify nts for the	Successful implementation on tight, 20-week timeline Successful crack detection
ame issue and ensure the s emaining life. luclear energy generation ha eneration phase and is key	as zero direct emissions ir	n the	10,000 hours of continued service without failure
countries around the world.			Transferability of the technology to other use cas

UN SUSTAINABILITY DEVELOPMENT GOALS (SDGs)

The SDGs provide an urgent call for action by all countries - developed and developing - in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. The goals listed here indicate the SDGs addressed in this case study.

PREVIAN.COM

DEFENDING THE FUTURE OF CRITICAL ASSETS